توضیحاتی در مورد کتاب Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians
نام کتاب : Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians
عنوان ترجمه شده به فارسی : طرحهای بسط خود الحاقی و کاربردهای مدرن برای کوانتومی هامیلتونی
سری : Springer Monographs in Mathematics
نویسندگان : Matteo Gallone , Alessandro Michelangeli
ناشر : Springer
سال نشر : 2023
تعداد صفحات : 557
ISBN (شابک) : 9783031108846 , 9783031108853
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 9 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Foreword
Preface
Contents
Part I Theory
1 Generalities on Symmetric and Self-Adjoint Operators on Hilbert Space
1.1 Preliminary Notions
1.2 Bounded, Closed, Closable Operators
1.3 Adjoint Operators
1.4 Minimal and Maximal Realisations of Linear Differential Operators
1.5 Bounded Operators, Compacts, Unitaries, and Orthogonal Projections
1.6 Invariant and Reducing Subspaces
1.7 Spectrum
1.8 Symmetric and Self-Adjoint Operators
1.9 Weyl Limit-Point Limit-Circle Analysis
1.10 Spectral Theorem
1.11 Functional Calculus
1.12 Spectral Theorem in Multiplication Form
1.13 Parts of the Spectrum
1.14 Perturbations of Self-Adjoint Operators
1.15 Quadratic Forms and Self-Adjoint Operators
1.16 Min-Max Principle
2 Classical Self-Adjoint Extension Schemes
2.1 Friedrichs Extension
2.2 Cayley Transform of Symmetric Operators
2.3 von Neumann\'s Extension Theory of Symmetric Operators
2.4 Kreĭn Transform of Positive Operators
2.5 Kreĭn\'s Extension Theory of Symmetric Semi-Bounded Operators
2.6 Višik-Birman Parametrisation of Self-Adjoint Extensions
2.6.1 Višik\'s B Operator
2.6.2 Višik-Birman Extension Representation
2.6.3 Birman\'s Operator
2.6.4 Semi-Bounded Extensions: Operator Parametrisation
2.6.5 Semi-Bounded Extensions: Quadratic Form Parametrisation
2.6.6 Parametrisation of Friedrichs and Kreĭn-von Neumann Extensions
2.7 Kreĭn-Višik-Birman Self-Adjoint Extension Theory Re-Parametrised
2.8 Invertibility, Semi-Boundedness, and Negative Spectrum in the Kreĭn-Višik-Birman Extension Scheme
2.9 Resolvents in the Kreĭn-Višik-Birman Extension Scheme
2.10 Self-Adjoint Extensions with Friedrichs Lower Bound
Part II Applications
3 Hydrogenoid Spectra with Central Perturbations
3.1 Hydrogenoid Hamiltonians with Point-Like Perturbation at the Centre
3.1.1 Fine Structure and Darwin Correction
3.1.2 Point-Like Perturbations Supported at the Interaction Centre
3.1.3 Angular Decomposition
3.1.4 The Radial Problem
3.1.5 Main Results: Radial Problem, 3D Problem, Eigenvalue Correction
3.2 Hydrogenoid Self-Adjoint Realisations
3.2.1 The Homogeneous Radial Problem
3.2.2 Inhomogeneous Inverse Radial Problem
3.2.3 Distinguished Extension and Its Inverse
3.2.4 Operators ps: [/EMC pdfmark [/Subtype /Span /ActualText (ModifyingAbove upper S With quotation dash) /StPNE pdfmark [/StBMC pdfmarkSps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark, SF, and S*
3.2.5 Kreĭn-Višik-Birman Classification of the Extensions
3.2.6 Reconstruction of the 3D Hydrogenoid Extensions
3.3 Perturbation of the Discrete Spectra
3.3.1 The s-Wave Eigenvalue Problem
3.3.2 Further Remarks
4 Dirac-Coulomb Hamiltonians for Heavy Nuclei
4.1 One-Body Dirac-Coulomb Models in Sub-Critical and Critical Regimes
4.2 Self-Adjoint Realisations of Dirac-Coulomb Blocks of Definite Angular and Spin-Orbit Symmetry
4.3 Extension Mechanism on Each Symmetry Block at Criticality
4.3.1 Deficiency Index Computation
4.3.2 The Homogeneous Problem: Kernel of h*
4.3.3 Distinguished Extension hD
4.3.4 Operator Closure ps: [/EMC pdfmark [/Subtype /Span /ActualText (ModifyingAbove h With quotation dash) /StPNE pdfmark [/StBMC pdfmarkhps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
4.3.5 Resolvents and Spectral Gap
4.4 Sommerfeld Formula and Distinguished Extension
4.4.1 Eigenvalue Problem by Truncation of Asymptotic Series
4.4.2 Eigenvalue Problem by Supersymmetric Methods
4.5 Discrete Spectra for Critical Dirac-Coulomb Hamiltonians
5 Quantum Particle on Grushin Structures
5.1 Grushin-Type Plane and Grushin-Type Cylinder
5.2 Geodesic Incompleteness
5.3 Geometric Quantum Confinement and Transmission Protocols
5.4 Constant-Fibre Direct Integral for the Grushin Plane
5.5 Constant-Fibre Orthogonal Sum for the Grushin Cylinder
5.6 Confinement Mechanisms on Plane and Cylinder
5.7 Related Settings on Almost Riemannian Manifolds
5.8 Extensions on One-Sided Fibre
5.8.1 Homogeneous Differential Problem: Kernel of Aα(k)*
5.8.2 Non-homogeneous Inverse Differential Problem
5.8.3 Operator Closure ps: [/EMC pdfmark [/Subtype /Span /ActualText (ModifyingAbove upper A Subscript alpha Baseline left parenthesis k right parenthesis With quotation dash) /StPNE pdfmark [/StBMC pdfmarkAα(k)ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
5.8.4 Distinguished Extension and Induced Classification
5.8.5 One-Sided Extensions for Non-zero Modes
5.8.6 One-Sided Extensions for the Zero Mode
5.9 Extensions on Two-Sided Fibre
5.10 General Extensions of ps: [/EMC pdfmark [/Subtype /Span /ActualText (script upper H Subscript alpha) /StPNE pdfmark [/StBMC pdfmarkHαps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
5.11 Uniformly Fibred Extensions of ps: [/EMC pdfmark [/Subtype /Span /ActualText (script upper H Subscript alpha) /StPNE pdfmark [/StBMC pdfmarkHαps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
5.11.1 Generalities and Classification Theorem
5.11.2 General Strategy
5.11.3 Integrability and Sobolev Regularity of g0 and g1
5.11.4 Decomposition of the Adjoint Into Singular Terms
5.11.5 Detecting Short-Scale Asymptotics and Regularity
5.11.6 Control of ps: [/EMC pdfmark [/Subtype /Span /ActualText (phi overTilde) /StPNE pdfmark [/StBMC pdfmarkφ\"0365φps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
5.11.7 Control of
5.11.8 Proof of the Uniformly Fibred Classification
5.12 Classification of Local Transmission Protocols on Cylinder
5.13 Spectral Analysis of Uniformly Fibred Extensions
5.13.1 Spectral Analysis of the Zero Mode
5.13.2 Spectral Analysis of Non-zero Modes
5.13.3 Reconstruction of the Spectral Content of Fibred Extensions
5.14 Scattering in Transmission Protocols
5.14.1 Scattering on Grushin-Type Cylinder
5.14.2 Scattering on Fibre
6 Models of Zero-Range Interaction for the Bosonic Trimer at Unitarity
6.1 Introduction and Background
6.2 Admissible Hamiltonians
6.2.1 The Minimal Operator
6.2.2 Friedrichs Extension
6.2.3 Adjoint
6.2.4 Deficiency Subspace
6.2.5 Extensions Classification
6.3 Two-Body Short-Scale Singularity
6.3.1 Short-Scale Structure
6.3.2 The Tλ Operator
6.3.3 Large Momentum Asymptotics
6.4 Ter-Martirosyan-Skornyakov Extensions
6.4.1 TMS and BP Asymptotics
6.4.2 Generalities on TMS Extensions
6.4.3 Symmetry and Self-Adjointness of the TMS Parameter
6.4.4 TMS Extensions in Sectors of Definite Angular Momentum
6.5 Sectors of Higher Angular Momenta
6.5.1 Tλ-Estimates
6.5.2 Self-Adjointness for ps: [/EMC pdfmark [/Subtype /Span /ActualText (script l greater than or slanted equals 1) /StPNE pdfmark [/StBMC pdfmark1ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
6.6 Sector of Zero Angular Momentum
6.6.1 Mellin-Like Transformations
6.6.2 Radial Ter-Martirosyan-Skornyakov Equation
6.6.3 Symmetric, Unbounded Below, TMS Extension
6.6.4 Adjoint of the Birman Parameter
6.6.5 Multiplicity of TMS Self-Adjoint Realisations
6.7 The Canonical Model and Other Well-Posed Variants
6.7.1 Canonical Model at Unitarity and at Given Three-Body Parameter
6.7.2 Spectral Analysis and Thomas Collapse
6.7.3 Variants
6.8 Ill-Posed Models
6.8.1 Ill-Posed Boundary Condition
6.8.2 Incomplete Criterion of Self-Adjointness
6.9 Regularised Models
6.9.1 Minlos-Faddeev Regularisation
6.9.2 Regularisation in the Sector =0
6.9.3 High Energy Cut-Off
A Physical Requirements Prescribing Self-Adjointness of Quantum Observables
A.1 Levels of Mathematical Formalisation of Quantum Mechanics
A.2 Physical Requirement for Symmetric Observables: Connection with Unboundedness
A.3 Self-Adjointness of the Quantum Hamiltonian Inferred from the Schrödinger Evolution
A.4 Self-Adjointness of the Quantum Hamiltonian Inferred from the Series Expansion of the Evolution Propagator
A.5 Non-uniqueness of the Schrödinger Dynamics when Self-Adjointness Is Not Declared
A.6 Self-Adjointness of Quantum Observables with an Orthonormal Basis of Eigenvectors
A.7 Self-Adjointness of Quantum Hamiltonians Inferred from Their Physical Stability
B References to Pedagogical Examples
B.1 Quantum Particle on Real Line
B.2 Quantum Particle on Half-Line
B.3 Quantum Particle on Interval
B.4 Quantum Particle with Point Interaction of δ-Type in One Dimension
B.5 Quantum Particle with Point Interaction of δ\'-Type in One Dimension
B.6 Quantum Particle with Point Interaction in Two Dimensions
B.7 Quantum Particle with Point Interaction in Three Dimensions
B.8 Quantum Particle with Point Interaction on Domain
B.9 Friedrichs Lower Bound
References
Index