توضیحاتی در مورد کتاب Statistical Physics
نام کتاب : Statistical Physics
عنوان ترجمه شده به فارسی : فیزیک آماری
سری : De Gruyter Studies in Mathematical Physics; 18
نویسندگان : Michael V. Sadovskii
ناشر : De Gruyter
سال نشر : 2012
تعداد صفحات : 292
ISBN (شابک) : 9783110270372 , 9783110270310
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 3 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Preface\n1 Basic principles of statistics\n 1.1 Introduction\n 1.2 Distribution functions\n 1.3 Statistical independence\n 1.4 Liouville theorem\n 1.5 Role of energy, microcanonical distribution\n 1.6 Partial distribution functions\n 1.7 Density matrix\n 1.7.1 Pure ensemble\n 1.7.2 Mixed ensemble\n 1.8 Quantum Liouville equation\n 1.9 Microcanonical distribution in quantum statistics\n 1.10 Partial density matrices\n 1.11 Entropy\n 1.11.1 Gibbs entropy. Entropy and probability\n 1.11.2 The law of entropy growth\n2 Gibbs distribution\n 2.1 Canonical distribution\n 2.2 Maxwell distribution\n 2.3 Free energy from Gibbs distribution\n 2.4 Gibbs distribution for systems with varying number of particles\n 2.5 Thermodynamic relations from Gibbs distribution\n3 Classical ideal gas\n 3.1 Boltzmann distribution\n 3.2 Boltzmann distribution and classical statistics\n 3.3 Nonequilibrium ideal gas\n 3.4 Free energy of Boltzmann gas\n 3.5 Equation of state of Boltzmann gas\n 3.6 Ideal gas with constant specific heat\n 3.7 Equipartition theorem\n 3.8 One-atom ideal gas\n4 Quantum ideal gases\n 4.1 Fermi distribution\n 4.2 Bose distribution\n 4.3 Nonequilibrium Fermi and Bose gases\n 4.4 General properties of Fermi and Bose gases\n 4.5 Degenerate gas of electrons\n 4.6 Relativistic degenerate electron gas\n 4.7 Specific heat of a degenerate electron gas\n 4.8 Magnetism of an electron gas in weak fields\n 4.9 Magnetism of an electron gas in high fields\n 4.10 Degenerate Bose gas\n 4.11 Statistics of photons\n5 Condensed matter\n 5.1 Solid state at low temperature\n 5.2 Solid state at high temperature\n 5.3 Debye theory\n 5.4 Quantum Bose liquid\n 5.5 Superfluidity\n 5.6 Phonons in a Bose liquid\n 5.7 Degenerate interacting Bose gas\n 5.8 Fermi liquids\n 5.9 Electron liquid in metals\n6 Superconductivity\n 6.1 Cooper instability\n 6.2 Energy spectrum of superconductors\n 6.3 Thermodynamics of superconductors\n 6.4 Coulomb repulsion\n 6.5 Ginzburg-Landau theory\n7 Fluctuations\n 7.1 Gaussian distribution\n 7.2 Fluctuations in basic physical properties\n 7.3 Fluctuations in ideal gases\n8 Phase transitions and critical phenomena\n 8.1 Mean-field theory of magnetism\n 8.2 Quasi-averages\n 8.3 Fluctuations in the order parameter\n 8.4 Scaling\n9 Linear response\n 9.1 Linear response to mechanical perturbation\n 9.2 Electrical conductivity and magnetic susceptibility\n 9.3 Dispersion relations\n10 Kinetic equations\n 10.1 Boltzmann equation\n 10.2 H-theorem\n 10.3 Quantum kinetic equations\n 10.3.1 Electron-phonon interaction\n 10.3.2 Electron-electron interaction\n11 Basics of the modern theory of many-particle systems\n 11.1 Quasiparticles and Green\'s functions\n 11.2 Feynman diagrams for many-particle systems\n 11.3 Dyson equation\n 11.4 Effective interaction and dielectric screening\n 11.5 Green’s functions at finite temperatures\nA Motion in phase space, ergodicity and mixing\n A.1 Ergodicity\n A.2 Poincare recurrence theorem\n A.3 Instability of trajectories and mixing\nB Statistical mechanics and information theory\n B.1 Relation between Gibbs distributions and the principle of maximal information entropy\n B.2 Purging Maxwell\'s “demon”\nC Nonequilibrium statistical operators\n C.1 Quasi-equilibrium statistical operators\n C.2 Nonequilibrium statistical operators and quasi-averages\nBibliography\nIndex